Peroxynitrite reduces the endothelium-derived hyperpolarizing factor component of coronary flow-mediated dilation in PECAM-1-knockout mice.
نویسندگان
چکیده
Platelet endothelial cell adhesion molecule 1 (PECAM-1) is capable of transducing signals in endothelial cells exposed to shear; however, the biological consequences of this signal transduction are unknown. Because shear stress elicits flow-mediated dilation (FMD), we examined whether steady-state FMD in mouse coronary arteries (MCAs) is affected in the PECAM-1 knockout (KO) mouse. MCAs were isolated from wild-type (WT) or KO mice and prepared for videomicroscopy, histofluorescence, Western blotting, and immunohistochemistry. FMD was examined in the absence and presence of N(omega)-nitro-l-arginine methyl ester (l-NAME) and l-NAME+indomethacin (INDO). FMD was reduced in KO relative to WT MCAs, but the l-NAME-inhibitable portion of FMD was similar between the two. The INDO-sensitive component of FMD was diminished in KO MCAs. In contrast, the residual component of dilation, presumably because of endothelium-derived hyperpolarizing factor (EDHF), was abolished in KO MCAs. Histofluorescence showed relatively more superoxide (O2-.; oxy-ethidium fluorescence) and peroxide production (dihydrochlorofluorescene fluoresecence) in KO MCAs at rest. Flow augmented O2-. and peroxide production in WT MCAs but had little effect on KO MCAs. Enhanced nitric oxide generation was observed in arteries from KO mice, accompanied with increased eNOS S1177 phosphorylation. In vessels from KO mice, treatment with ebselen decreased peroxynitrite (ONOO-) formation and improved the reduced FMD, largely due to restoration of the presumed EDHF component. These results suggest that PECAM-1 is necessary for normal FMD in the mouse coronary circulation. In the absence of this adhesion and signaling molecule, ONOO- production is increased concomitant with a reduction in both the EDHF and INDO-sensitive components of FMD.
منابع مشابه
CALL FOR PAPERS Cardiovascular-Kidney Interactions in Health and Disease Peroxynitrite reduces the endothelium-derived hyperpolarizing factor component of coronary flow-mediated dilation in PECAM-1-knockout mice
Liu, Yanping, Aaron H. Bubolz, Yang Shi, Peter J. Newman, Debra K. Newman, and David D. Gutterman. Peroxynitrite reduces the endothelium-derived hyperpolarizing factor component of coronary flow-mediated dilation in PECAM-1 knockout mice. Am J Physiol Regul Integr Comp Physiol 290: R57–R65, 2006. First published September 15, 2005; doi:10.1152/ajpregu.00424.2005.—Platelet endothelial cell adhes...
متن کاملPECAM-1 mediates NO-dependent dilation of arterioles to high temporal gradients of shear stress.
OBJECTIVE In response to changes in wall shear stress (WSS) the vascular endothelium releases several factors, among others nitric oxide. On the basis of studies of endothelial cells in culture, suggesting that platelet endothelial cell adhesion molecule-1 (PECAM-1) is specifically involved in sensing and coupling high temporal gradients of fluid shear stress with activation of eNOS, we hypothe...
متن کاملPeroxynitrite Disrupts Endothelial Caveolae Leading to eNOS Uncoupling and Diminished Flow-Mediated Dilation in Coronary Arterioles of Diabetic Patients
Peroxynitrite (ONOO(-)) contributes to coronary microvascular dysfunction in diabetes mellitus (DM). We hypothesized that in DM, ONOO(-) interferes with the function of coronary endothelial caveolae, which plays an important role in nitric oxide (NO)-dependent vasomotor regulation. Flow-mediated dilation (FMD) of coronary arterioles was investigated in DM (n = 41) and non-DM (n = 37) patients u...
متن کاملCaveolin-1 limits the contribution of BK(Ca) channel to EDHF-mediated arteriolar dilation: implications in diet-induced obesity.
AIMS Caveolin-1 (Cav-1) interacts with large conductance Ca(2+)-activated potassium channels (BKCa) and likely exerts a negative regulatory effect on the channel activity. We investigated the role of Cav-1 in modulating BK(Ca) channel-mediated, endothelium-derived hyperpolarizing factor (EDHF)-dependent arteriolar dilation in normal condition and in an experimental model of obesity. METHODS A...
متن کاملRegulation of Coronary Endothelial Function by Interactions between TNF-α, LOX-1 and Adiponectin in Apolipoprotein E Knockout Mice.
BACKGROUND/AIMS Although individual contributions of TNF-α, LOX-1 and adiponectin to the regulation of endothelial function were previously studied, their interactions in the regulation of coronary endothelial function remain unclear. The aim of this study is to investigate the interactions between TNF-α, LOX-1 and adiponectin in endothelial dysfunction in atherosclerosis. METHODS Vasodilator...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Regulatory, integrative and comparative physiology
دوره 290 1 شماره
صفحات -
تاریخ انتشار 2006